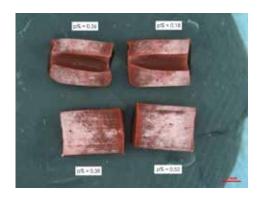
RevMix 30

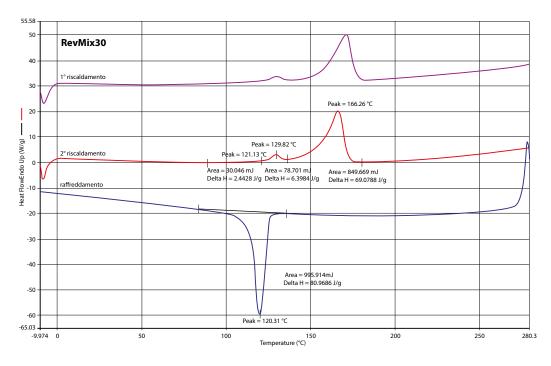

Scheda tecnica



CARATTERISTICHE DEL MATERIALE

OSSERVAZIONE ALLO STEREO MICROSCOPIO

Nella foto seguente è riportata l'osservazione allo stereo-microscopio del campione RevMix 30.



ANALISI DSC

I granuli del campione **RevMix 30** sono stati sminuzzati e sottoposti ad analisi DSC con il seguente programma termico:

- I° riscaldamento da -10°C a 280°C, 20°C/min in N₂
- Raffreddamento da 280°C a -10°C, -20 °C/min in N₂
- II° riscaldamento da -10°C a 280°C, 20°C/min in N₂

Nella figura è riportato il termogramma DSC relativo ai campioni **RevMix 30**.

DSC RevMix 30

L'analisi DSC mostra che il granulo risulta essere costituito da tre componenti principali quali LDPE, HDPE e PP come si può vedere dai diversi punti di fusione del termogramma. Le percentuali relative riportate in tabella, sono state calcolate sulla base dell'entalpia di fusione.

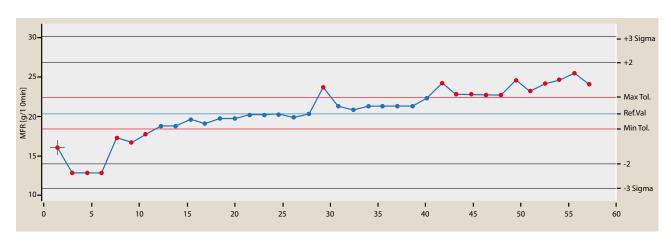
RevMix 30		
% in miscela (Dati medi)		
LLDPE/LDPE	9 (±6)	
HDPE	8 (±3)	
PP	80 (±10)	

Nota: non si rileva la presenza di PET e PVC nella miscela.

La stima % in miscela di LLDPE/LDPE, HDPE, PP e PET è calcolata come rapporto percentuale tra il ΔHf (J/g) del composto e la somma dei ΔHf (J/g) di tutti i composti presenti in miscela. Tutti i ΔHf (J/g) sono calcolati utilizzando la curva DSC di 2º riscaldamento. La presenza/assenza di PVC nella miscela è determinata dalla presenza/assenza della transizione vetrosa nella curva DSC di 1º e 2º riscaldamento.

Dati RevMix 30

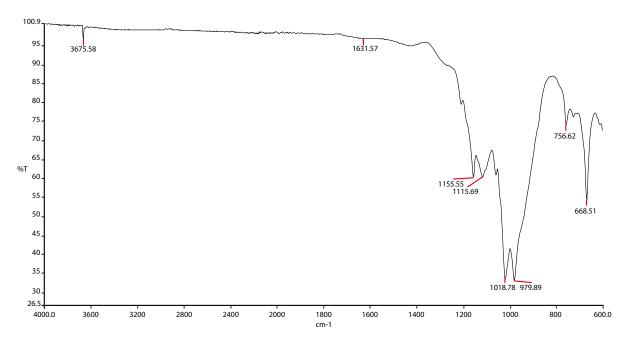
INDICE DI FLUIDITÀ NEL FUSO (MFR)


Il campione **RevMix 30** è stato sottoposto ad analisi MFR secondo la Norma ASTM D1238A con peso da 2,16 kg, impostando una temperatura di 230°C, preriscaldando il campione per 30 secondi e recuperando il materiale per 60 secondi. Lo strumento misura anche il Melt Volume rate (MVR) nel decorso della prova.

I risultati di MFR medio sono riportati in tabella.

Campione	MFR medio (g/10 min)
RevMix 30	16 (±3)

Risultati dei test MFR


In Figura si riporta l'andamento del MVR in funzione del tempo per il campione **RevMix 30**.

Andamento del MVR in funzione del tempo per il campione RevMix 30

ANALISI DELLE CENERI

Le ceneri sono state analizzate quantitativamente secondo la norma ISO 3551-1 e qualitativamente mediante spettroscopia FT-IR. In figura è riportato lo spettro risultante:

FT-IR RevMix 30

Lo spettro delle ceneri così ottenuto mostra la presenza di silicati in quantità preponderante e solfati. In tabella si riportano i risultati dell'analisi quantitativa effettuata sul campione **RevMix 30**.

Campione	% cenere (Dati medi)
RevMix 30	5 (±3)

Risultati analisi quantitativa delle ceneri

VALUTAZIONE DELL'UMIDITÀ

Per la valutazione dell'umidità è stato utilizzato il metodo gravimetrico descritto dalla norma UNI 10667-16. 100 g del campione **RevMix 30** sono stati introdotti in stufa alla temperatura di 100 °C per 2 h. La differenza di peso del campione prima e dopo ha permesso di valutare la quantità di umidità residua. I dati ottenuti sono riportati in tabella:

Campione	% Umidità (Dati medi)
RevMix 30	0,15 (±0,05)

Dati test di umidità

PROVE TENSILI A TRAZIONE

Dal granulo **RevMix 30** sono stati stampati con pressa a iniezione i provini necessari all'esecuzione della prova di trazione secondo la norma ISO527 e della prova in flessione secondo la norma ISO178. In tabella sono riportati i valori ottenuti.

RevMix 30 - Miscela poliolefinica

Proprietà	Metodo di prova	Condizioni di prova	Unità di misura	Valore tipico
Fisiche				
Densità	ASTM D 792-91	23°C	g/cm3	0,907
Grado di fluidità (MVR)	ASTM D 1238A	230/2,16	g/10 min	15 (±3)
Percentuale Ceneri	UNI 10667-16		%	5 (±3)
Percentuali umidità	UNI 10667-16		%	0,15 (±0,05)
Meccaniche				
Resistenza IZOD	ISO 180A	23°C	KJ/m2	4,5
Resistenza IZOD	ISO 180A	-20°C	KJ/m2	2,9
Modulo elastico di flessione	ISO 178		N/mm2	1288
Modulo elastico di trazione	ISO 527		N/mm2	1209
Termiche				
Indice di deflessione a caldo HDT	ASTM D 648-96		°C	nd
Indice di penetrazione a caldo VICAT	ASTM D 1525-96		°C	nd
Punto di fusione DSC	ASTM D 3418-97		°C	165
Condizioni di stampaggio				
Temperatura cilindro			°C	max 250
Temperatura stampo			°C	60-90
Temperatura di essiccazione			°C	80
Tempo di essiccazione			h	min4-max24

I valori riportati rappresentano la media di un campione significativo del prodotto e sono forniti per dare indicazioni all'utilizzatore; non costituiscono garanzia e non implicano in termini generali alcuna garanzia o impegno da parte della Società.

PROVA RESISTENZA UV NORMA ISO 4892-2

Le placchette sono state esposte per 7700 ore equivalenti a 5 anni a 120KLY.

CONFORMITÀ MATERIALE REACH

In tabella sono riportati i risultati delle analisi eseguite sul campione per verificarne la conformità al Regolamento Reach.

Parametro	Unità di Misura	Metodo	Risultato
PCB (policlorobifenili)	mg/kg	EPA 3550C EPA8270E	< 1,2

CLOROPARAFFINE		EPA 3550C EPA8270E	
C10-C13	mg/kg		< 20,0
C14-C17	mg/kg		< 20,0
C18-C20	mg/kg		< 20,0

FTALATI		EPA 3550C EPA8270E	
DIMETIL FTALATO	mg/kg		< 1,0
DIETIL FTALATO	mg/kg		< 1,0
DI-N-BUTIL FTALATO	mg/kg		< 1,0
DI-ISOBUTIL FTALATO	mg/kg		1,3±0,6
BUTIL BENZIL FTALATO	mg/kg		< 1,0
BIS(2-ETILESIL) FTALATO	mg/kg	_	11,0±5
ALTRI FTALATI	mg/kg		12,0±6

IDROCARBURI POLICICLICI AROMATICI (IPA)		EPA 3550C EPA8270E	
NAFTALENE	µg/kg		< 0,12
ACENAFTILENE	µg/kg		< 0,12
ACENAFTENE	µg/kg		< 0,12
FLUORENE	µg/kg		< 0,12
FENANTRENE	µg/kg		< 0,12
ANTRACENE	µg/kg		< 0,12
FLUORANTENE	µg/kg		< 0,12
PIRENE	µg/kg		< 0,12
BENZO(a)ANTRACENE	µg/kg		< 0,12
CRISENE	µg/kg		< 0,12
BENZO(b)FLUORANTENE	µg/kg		< 0,12
BENZO(k)FLUORANTENE	µg/kg		< 0,12
BENZO(j)FLUORANTENE	µg/kg		< 0,12
BENZO(e)PIRENE	µg/kg		< 0,12
BENZO(a)PIRENE	µg/kg		< 0,12
PERILENE	µg/kg		< 0,12
INDENO(1,2,3-cd)PIRENE	µg/kg		< 0,12
DIBENZO(a,h)ANTRACENE	µg/kg		< 0,12
BENZO(g,h,i)PERILENE	µg/kg		< 0,12
DIBENZO(a,I)PIRENE	µg/kg		< 0,12
DIBENZO(a,e)PIRENE	µg/kg		< 0,12
DIBENZO(a,i)PIRENE	µg/kg		< 0,12
DIBENZO(a,h)PIRENE	µg/kg		< 0,12

CROMO ESAVALENTE (CR VI)	mg/kg	EPA 3060A EPA 7196A	< 4,2
METALLI PESANTI			

METALLI PESANTI			
ANTIMONIO	mg/kg	UNI EN 13657 UNI EN ISO11885	< 5,1
ARSENICO	mg/kg	UNI EN 13657 UNI EN ISO11885	< 5,1
CADMIO	mg/kg	UNI EN 13657 UNI EN ISO11885	< 5,1
СКОМО	mg/kg	UNI EN 13657 UNI EN ISO11885	< 5,1
MERCURIO	mg/kg	UNI EN 13657 EPA 6010C	< 0,51
NICHEL	mg/kg	UNI EN 13657 UNI EN ISO11885	< 5,1
PIOMBO	mg/kg	UNI EN 13657 UNI EN ISO11885	< 5,1
RAME	mg/kg	UNI EN 13657 UNI EN ISO11885	< 5,1
SELENIO	mg/kg	UNI EN 13657 UNI EN ISO11885	< 5,1
STAGNO	mg/kg	UNI EN 13657 UNI EN ISO11885	< 5,1
TELLURIO	mg/kg	UNI EN 13657 UNI EN ISO11885	< 5,1
ZINCO	mg/kg	UNI EN 13657 UNI EN ISO11885	< 5,1

ESEMPI DI UTILIZZO

REVET SPA

Società soggetta a Direzione e Coordinamento da parte di Alia servizi ambientali Spa Viale America, 104 • Loc. Gello • 56025 • Pontedera (PI) Tel. 0587 271211 • Fax 0587 271269 info@revet.

www.revet.com

